

DMTMM BF4 Applications

DMTMM BF4 (4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium tetrafluoroborate) is a water-soluble organic triazine derivative widely used to activate carboxylic acids for amide synthesis. As one of the most common reactions in organic chemistry, amide coupling is efficiently facilitated by DMTMM under mild conditions. Its mechanism aligns with other established amide coupling reactions but offers advantages in solubility and selectivity. In the development of Antibody–Drug Conjugates (ADCs) and Peptide–Drug Conjugates (PDCs), DMTMM BF4 supports precise, efficient, and gentle conjugation, making it a valuable tool for complex bioconjugation workflows.

CAS No.: 293311-03-2

Application Area	Example Use	Advantage of DMTMM BF4	Key References
Peptide synthesis	Amide bond formation between amino acids	High yield, low racemization, works in water	Kunishima et al., Tetrahedron (1999)
Nucleic acid chemistry	DNA/RNA labeling with fluorophores or drugs	Mild, aqueous conditions preserve nucleic acids	Ficht et al., Bioconjug. Chem. (2014)
Protein/enzyme conjugation	PEGylation, biotinylation, fluorescent dye labeling	Retains protein activity; efficient in aqueous buffers	Hanayama & Hashimoto, Bioconjug. Chem. (2006)
Drug discovery / bioconjugates	Antibody-drug conjugates, peptide-drug linkers	Reliable amide bond formation; avoids carbodiimide side reactions	Dirksen & Dawson, Bioconjug. Chem. (2008)
Polymer & biomaterials modification	Functionalization of hydrogels or polymers with peptides/proteins	Enhances biocompatibility and drug delivery features	Obara et al., Biomaterials (2005)
Carbohydrate chemistry	Coupling sugars to amines for glycoconjugates	Useful in glycobiology and vaccine research	Yuasa et al., J. Org. Chem. (2012)

Headquartered in Bellevue, WA, Ascensus Specialties is a global leader in catalysts, ligands, building blocks, and specialty reagents. Our 60+ years of synthetic knowhow, allows us to bring additional value to our clients through our custom synthesis and GMP services. From world-class manufacturing facilities in Elma, WA, Evans City, PA, Newburyport, MA, and Cambridge, UK, Ascensus has a global reach that ensures our clients can consistently manufacture their products to the highest standards.

> THE ASCENSUS ADVANTAGE

60+ Years of Experience

Custom-Tailored Purity and Impurity Profiles

Commercial GMP Capabilities

Supply Chain Development

Process Control and Robustness

Bioburden Control

The ASCENSUS word, design marks and all branded products are trademarks of Ascensus Specialties Inc. in the United States and elsewhere.

CONTACT

E ask@ascensusspecialties.com

U www.ascensusspecialties.com

CORPORATE OFFICE

Ascensus Specialties 2821 Northup Way, Suite 275 Bellevue, WA 98004

MANUFACTURING FACILITIES

4800 State Route 12 Elma, WA 98541

1424 Mars-Evans City Rd Evans City, PA 16033

7 Mulliken Way Newburyport , MA 01950

Haverhill Road, Stradishall Newmarket Suffolk, CB8 9EX